Calcium ions are involved in egress of Babesia bovis merozoites from bovine erythrocytes
نویسندگان
چکیده
Bovine babesiosis is a livestock disease known to cause economic losses in endemic areas. The apicomplexan parasite Babesia bovis is able to invade and destroy the host's erythrocytes leading to the serious pathologies of the disease, such as anemia and hemoglobinuria. Understanding the egress mechanisms of this parasite is therefore a key step to develop new therapeutic strategies. In this study, the possible involvement of Ca(2+) in the egress of B. bovis merozoites from infected erythrocytes was investigated. Egress was artificially induced in vitro using calcium ionophore A23187 and thapsigargin to increase Ca(2+) concentration in the cytosol of the parasite cells. The increased intracellular Ca(2+) concentration following these treatments was confirmed using live cell Ca(2+) imaging with confocal laser scanning microscopy. Based on our findings, we suggest a Ca(2+) signalling pathway in the egress of B. bovis merozoites.
منابع مشابه
Gliding Motility of Babesia bovis Merozoites Visualized by Time-Lapse Video Microscopy
BACKGROUND Babesia bovis is an apicomplexan intraerythrocytic protozoan parasite that induces babesiosis in cattle after transmission by ticks. During specific stages of the apicomplexan parasite lifecycle, such as the sporozoites of Plasmodium falciparum and tachyzoites of Toxoplasma gondii, host cells are targeted for invasion using a unique, active process termed "gliding motility". However,...
متن کاملCellular localization of Babesia bovis merozoite rhoptry-associated protein 1 and its erythrocyte-binding activity.
The cellular localization of Babesia bovis rhoptry-associated protein 1 (RAP-1) and its erythrocyte-binding affinity were examined with anti-RAP-1 antibodies. In an indirect immunofluorescent antibody test, RAP-1 was detectable in all developmental stages of merozoites and in extracellular merozoites. In the early stage of merozoite development, RAP-1 appears as a dense accumulation, which late...
متن کاملBabesia bovis merozoite surface antigen 1 and rhoptry-associated protein 1 are expressed in sporozoites, and specific antibodies inhibit sporozoite attachment to erythrocytes.
We examined Babesia bovis sporozoites for the expression of two molecules, merozoite surface antigen 1 (MSA-1) and rhoptry-associated protein 1 (RAP-1), that are postulated to be involved in the invasion of host erythrocytes. Both MSA-1 and RAP-1 were transcribed and expressed in infectious sporozoites. Importantly, monospecific MSA-1 and RAP-1 antisera each inhibited sporozoite invasion of ery...
متن کاملBabesia bovis merozoite surface antigen 2 proteins are expressed on the merozoite and sporozoite surface, and specific antibodies inhibit attachment and invasion of erythrocytes.
The Babesia bovis merozoite surface antigen 2 (MSA-2) locus encodes four proteins, MSA-2a(1), -2a(2), -2b, and -2c. With the use of specific antibodies, each MSA-2 protein was shown to be expressed on the surface of live extracellular merozoites and coexpression on single merozoites was confirmed. Individual antisera against MSA-2a, MSA-2b, and MSA-2c significantly inhibited merozoite invasion ...
متن کاملStimulation of nitric oxide production in macrophages by Babesia bovis.
Gamma interferon (IFN-gamma)-activated macrophages are believed to play a key role in resistance to Babesia bovis through parasite suppression by macrophage secretory products. However, relatively little is known about interactions between this intraerythrocytic parasite and the macrophages of its bovine host. In this study, we examined the in vitro effect of intact and fractionated B. bovis me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 77 شماره
صفحات -
تاریخ انتشار 2015